A new synthetic route of Quinuclidine-4-carboxylic acid hydrochloride

The chemical industry reduces the impact on the environment during synthesis, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,I believe this compound will play a more active role in future production and life.

40117-63-3,A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

1. Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (Compound 91). A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mul, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled to room temperature, and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, and the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered, and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8% yield), which was used in the next step without any further purification.

The chemical industry reduces the impact on the environment during synthesis, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Chiesi Farmaceutici S.p.A.; US2012/276018; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Continuously updated synthesis method about Quinuclidine-4-carboxylic acid hydrochloride

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 40117-63-3, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, as follows.40117-63-3

Step 1. Quinuclidin-4-ylmethanol Quinuclidine-4-carboxylic acid hydrochloride (6.0 g, 0.03 1 mmoles) in tetrahydrofuran (300 ml) was treated with lithium aluminum hydride (5.0 g, 0.137 mmoles) at ambient temperature for 18 hours. Water (20 ml) and 10% aqueous sodium hydroxide (7.5 ml) was added carefully and the mixture filtered, washing with diethyl ether. The combined filtrates were evaporated to dryness to give the title compound as a white solid 4.04 g, (91%): MS (+ve ion electrospray) m/z 142 (MH+, 100%)

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 40117-63-3, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; SmithKline Beecham p.l.c.; US6281226; (2001); B1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of Quinuclidine-4-carboxylic acid hydrochloride

The chemical industry reduces the impact on the environment during synthesis, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,I believe this compound will play a more active role in future production and life.

40117-63-3,A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 1(Quinuclidin-4-yl)methanol (Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954).To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

The chemical industry reduces the impact on the environment during synthesis, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; CoMentis, Inc.; US2009/88418; (2009); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Sources of common compounds: 40117-63-3

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 40117-63-3,40117-63-3

Under the protection of nitrogen, a solution for dissolving the WD2 with the tetrahydrofuran is added into a 20-liter reaction kettle, the temperature is controlled to be below 40 C under stirring, and 3.8 liters of phenylmagnesium bromide reagent is added dropwise, and carrying out heating reflux reaction for 4 hours. The temperature is controlled to be controlled at 40 C under cooling and stirring, and 1.547 kg of ammonium chloride aqueous solution (25%) is added dropwise) after dropwise adding, adding about 74 kg of purified water, and standing for liquid separation after stirring, so as to obtain an organic phase; extracting the water phase by using 2-methyl tetrahydrofuran, the organic phase is combined with the organic phase, and the organic phase is washed with a 25% sodium chloride aqueous solution. A 1 m hydrochloric acid aqueous solution is added to the obtained organic phase to be about 140Kg, fully stirring, standing and separating liquid to obtain a water phase; dropwise adding a sodium hydroxide aqueous solution with the concentration of 4 m into the obtained hydrochloric acid salt water solution of the WD1 to adjust the pH value, and separating out solids. After dropping, stirring is continued for about 0.5 hour, and the mixture is filtered to obtain a filter cake; the filtrate is subjected to reduced pressure concentration until no large amount of distillate is discharged, and the filtrate is filtered to obtain a filter cake; combining the obtained filter cakes twice, and washing with purified water with the temperature of 25 +/-5 C, and then pulping is carried out by using purified water at 25 +/-5 C for about 2.61 kg. The filter cake is firstly washed with purified water at 25 +/-5 C, and then is dried to obtain WD1:, 40117-63-3

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Sichuan Hai Sike Pharmaceutical Co., Ltd.; Yi Shixu; Fu Li; (6 pag.)CN106810546; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Continuously updated synthesis method about 40117-63-3

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 40117-63-3, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, as follows.40117-63-3

Step 1. Quinuclidin-4-ylmethanol Quinuclidine-4-carboxylic acid hydrochloride (6.0 g, 0.03 1 mmoles) in tetrahydrofuran (300 ml) was treated with lithium aluminum hydride (5.0 g, 0.137 mmoles) at ambient temperature for 18 hours. Water (20 ml) and 10% aqueous sodium hydroxide (7.5 ml) was added carefully and the mixture filtered, washing with diethyl ether. The combined filtrates were evaporated to dryness to give the title compound as a white solid 4.04 g, (91%): MS (+ve ion electrospray) m/z 142 (MH+, 100%)

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 40117-63-3, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; SmithKline Beecham p.l.c.; US6281226; (2001); B1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Sources of common compounds: 40117-63-3

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 40117-63-3,40117-63-3

1. Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (Compound 91). A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mul, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled to room temperature, and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, and the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered, and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8% yield), which was used in the next step without any further purification.

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Chiesi Farmaceutici S.p.A.; US2012/276018; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about Quinuclidine-4-carboxylic acid hydrochloride

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Quinuclidine-4-carboxylic acid hydrochloride reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.40117-63-3, Quinuclidine-4-carboxylic acid hydrochloride it is a common compound, a new synthetic route is introduced below.40117-63-3

Step 8: (S)-4- ((1- (5- (2-methoxyquinolin-1-ium-3-yl)oxazol-2-yl)- 7- (methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (F8)A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.1 M) was treated with HOBt (1.3 eq.), EDC HC1 (1.3 eq.) and DIPEA (1.3 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to F7. The reaction was stirred for at RT for 48 h, filtered and directly purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. Theorganic phase was separated dried over Na2504 and concentrated under reduced pressure. The resulting solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. MS (ESj C29H37N504: 520 (M+H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Quinuclidine-4-carboxylic acid hydrochloride reaction routes.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of 40117-63-3

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 40117-63-3.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3, This compound has unique chemical properties. The synthetic route is as follows.,40117-63-3

To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (5.5 g) in 30 mL of dry THF at 0 C. was added borane dimethyl sulfide complex (6.7 g, 3 eq.). The reaction mixture was stirred at room temperature for 1 hr and heated to reflux for 16 hr. It was then quenched with drop-wise addition of methanol (7 mL) at 0 C. The solvent was then removed under reduced pressure, and the crude product obtained was purified by column chromatography (Silica gel, 20% EA:Hexane) to afford the product quinuclidin-4-ylmethanol N-borane complex as a white solid (1.35 g, 30%).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 40117-63-3.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Sources of common compounds: 40117-63-3

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 40117-63-3, other downstream synthetic routes, hurry up and to see.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, it is a common compound, a new synthetic route is introduced below.40117-63-3

To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (5.5 g) in 30 mL of dry THF at 0 C. was added borane dimethyl sulfide complex (6.7 g, 3 eq.). The reaction mixture was stirred at room temperature for 1 hr and heated to reflux for 16 hr. It was then quenched with drop-wise addition of methanol (7 mL) at 0 C. The solvent was then removed under reduced pressure, and the crude product obtained was purified by column chromatography (Silica gel, 20% EA:Hexane) to afford the product quinuclidin-4-ylmethanol N-borane complex as a white solid (1.35 g, 30%).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 40117-63-3, other downstream synthetic routes, hurry up and to see.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Extended knowledge of Quinuclidine-4-carboxylic acid hydrochloride

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Quinuclidine-4-carboxylic acid hydrochloride.

40117-63-3,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.40117-63-3,A new synthetic method of this compound is introduced below.

(Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954). To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Quinuclidine-4-carboxylic acid hydrochloride.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider