The origin of a common compound about 40117-63-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Step 5: (S)-4-((1-(5-(6-methoxynaphthalen-2-yl)-JH-imidazol-3-ium-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (E5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 mm and then added to a solution of E4 in DMF (0.2 M). The reaction was stirred at RT for 2 h, then filtered and purified by RP-HPLC (CH3CN/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between EtOAc and sat. aq. NaHCO3. The organicphase was separated, dried (Na2504) and concentrated under reduced pressure. The resulting pale yellow solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. (400 MHz, 300K, DMSOd 6) oe: 11.5 (br s, 1H), 8.14 (br s, 1H), 7.95-7.73 (m, 4H), 7.66 (m, 1H), 7.54 (m, 1H), 7.27 (d, 1H, J2 Hz), 7.12 (dd, 1H, J8.8 and 2.4 Hz), 4.99 (m, 1H), 3.89 (s, 2H), 3.86 (s, 3H), 3.16 (m,6H), 2.54 (d, J4.4 Hz), 3H), 2.02 (t, 2H, J7.4 Hz), 2.01 (m, 6H), 1.83 (m, 2H), 1.48 (m, 2H),1.35-1.15 (m, 4H). MS (ESj C30H39N503: 518 (M+H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,its application will become more common.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of 40117-63-3

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 40117-63-3,40117-63-3

1. Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (Compound 91). A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mul, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled to room temperature, and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, and the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered, and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8% yield), which was used in the next step without any further purification.

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Chiesi Farmaceutici S.p.A.; US2012/276018; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of Quinuclidine-4-carboxylic acid hydrochloride

According to the analysis of related databases, Quinuclidine-4-carboxylic acid hydrochloride, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, as follows.40117-63-3

Step 8: (S)-4- ((1- (5- (2-methoxyquinolin-1-ium-3-yl)oxazol-2-yl)- 7- (methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (F8)A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.1 M) was treated with HOBt (1.3 eq.), EDC HC1 (1.3 eq.) and DIPEA (1.3 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to F7. The reaction was stirred for at RT for 48 h, filtered and directly purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. Theorganic phase was separated dried over Na2504 and concentrated under reduced pressure. The resulting solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. MS (ESj C29H37N504: 520 (M+H).

According to the analysis of related databases, Quinuclidine-4-carboxylic acid hydrochloride, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Sources of common compounds: 40117-63-3

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 40117-63-3, other downstream synthetic routes, hurry up and to see.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, it is a common compound, a new synthetic route is introduced below.40117-63-3

Under the protection of nitrogen, phenyllithium (1.5 – 1.7M cyclohexane/diethyl ether solution (70:30), 30.0 ml, 48.00mmol) solution cooled to -30 C, in -30 C under, 0.5 hours slowly dropping WD2 (2.27g, 12 . 35mmol) of THF (30 ml) solution to the reaction mixture. The reaction liquid heating to room temperature reaction 16 hours, adding water quenching reaction, mixed solution under vacuum to evaporate to dry, adding water and ethyl acetate, to obtain white solid to settle out, filtering to obtain solid, shall WD1 (1.19g). The aqueous phase is further extracted with ethyl acetate, the combined organic layer was dried with anhydrous sodium sulfate, filtered, concentrated under reduced pressure to get the crude product, the crude product of ethyl acetate and hexane processing, filtering to obtain WD1.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 40117-63-3, other downstream synthetic routes, hurry up and to see.

Reference£º
Patent; Sichuan Hai Sike Pharmaceutical Co., Ltd.; Yi Shixu; Fu Li; (6 pag.)CN106810546; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Extended knowledge of 40117-63-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Quinuclidine-4-carboxylic acid hydrochloride.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.40117-63-3,A new synthetic method of this compound is introduced below.40117-63-3

Step 5: (S)-4-((1-(5-(6-methoxynaphthalen-2-yl)-JH-imidazol-3-ium-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (E5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 mm and then added to a solution of E4 in DMF (0.2 M). The reaction was stirred at RT for 2 h, then filtered and purified by RP-HPLC (CH3CN/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between EtOAc and sat. aq. NaHCO3. The organicphase was separated, dried (Na2504) and concentrated under reduced pressure. The resulting pale yellow solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. (400 MHz, 300K, DMSOd 6) oe: 11.5 (br s, 1H), 8.14 (br s, 1H), 7.95-7.73 (m, 4H), 7.66 (m, 1H), 7.54 (m, 1H), 7.27 (d, 1H, J2 Hz), 7.12 (dd, 1H, J8.8 and 2.4 Hz), 4.99 (m, 1H), 3.89 (s, 2H), 3.86 (s, 3H), 3.16 (m,6H), 2.54 (d, J4.4 Hz), 3H), 2.02 (t, 2H, J7.4 Hz), 2.01 (m, 6H), 1.83 (m, 2H), 1.48 (m, 2H),1.35-1.15 (m, 4H). MS (ESj C30H39N503: 518 (M+H).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Quinuclidine-4-carboxylic acid hydrochloride.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Continuously updated synthesis method about 40117-63-3

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 40117-63-3, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, as follows.40117-63-3

(Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954). To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 40117-63-3, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Research on new synthetic routes about 40117-63-3

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about Quinuclidine-4-carboxylic acid hydrochloride.

40117-63-3,The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 40117-63-3

Step 1. Quinuclidin-4-ylmethanol Quinuclidine-4-carboxylic acid hydrochloride (6.0 g, 0.03 1 mmoles) in tetrahydrofuran (300 ml) was treated with lithium aluminum hydride (5.0 g, 0.137 mmoles) at ambient temperature for 18 hours. Water (20 ml) and 10% aqueous sodium hydroxide (7.5 ml) was added carefully and the mixture filtered, washing with diethyl ether. The combined filtrates were evaporated to dryness to give the title compound as a white solid 4.04 g, (91%): MS (+ve ion electrospray) m/z 142 (MH+, 100%)

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about Quinuclidine-4-carboxylic acid hydrochloride.

Reference£º
Patent; SmithKline Beecham p.l.c.; US6281226; (2001); B1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about Quinuclidine-4-carboxylic acid hydrochloride

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Step 5: (S)-4-((1-(5-(2-methoxyquinolin-1-ium-3-yl)-JH-imidazol-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (A5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to a solution of A4 in DMF (0.2 M). The reaction was stirred at RT for 2 h and subsequently was purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). Theproduct was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. The organic phase was separated, dried over Na2504 and concentrated under reduced pressure. The resulting syrup was dissolved in acetonitrile/H20 (2:3) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. 1H-NMR (400 MHz, 300 K, DMSO-d6) oe 8.73 (br s, 1H), 7.94 (t, 2H, J 9.6 Hz), 7.76 (d, 1H, J 8.0 Hz), 7.67 (br s,1H), 7.60 (m, 2H), 7.42 (t, 1H, J8.0 Hz), 5.02 (m, 1H), 4.13 (s, 3H), 3.93 (s, 2H), 3.18 (t, 6H, J7.2 Hz), 2.54 (d, 3H, J4.4 Hz), 2.05-1.91 (m, 8H), 1.51-1.23 (m, 8H). MS (ESj C29H38N603:519 (M+H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of Quinuclidine-4-carboxylic acid hydrochloride

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 40117-63-3,40117-63-3

Example 1(Quinuclidin-4-yl)methanol (Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954).To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

According to the analysis of related databases, 40117-63-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; CoMentis, Inc.; US2009/88418; (2009); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Sources of common compounds: Quinuclidine-4-carboxylic acid hydrochloride

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 40117-63-3, other downstream synthetic routes, hurry up and to see.

40117-63-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, it is a common compound, a new synthetic route is introduced below.

Step 5: (S)-4-((1-(5-(2-methoxyquinolin-1-ium-3-yl)-JH-imidazol-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (A5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to a solution of A4 in DMF (0.2 M). The reaction was stirred at RT for 2 h and subsequently was purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). Theproduct was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. The organic phase was separated, dried over Na2504 and concentrated under reduced pressure. The resulting syrup was dissolved in acetonitrile/H20 (2:3) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. 1H-NMR (400 MHz, 300 K, DMSO-d6) oe 8.73 (br s, 1H), 7.94 (t, 2H, J 9.6 Hz), 7.76 (d, 1H, J 8.0 Hz), 7.67 (br s,1H), 7.60 (m, 2H), 7.42 (t, 1H, J8.0 Hz), 5.02 (m, 1H), 4.13 (s, 3H), 3.93 (s, 2H), 3.18 (t, 6H, J7.2 Hz), 2.54 (d, 3H, J4.4 Hz), 2.05-1.91 (m, 8H), 1.51-1.23 (m, 8H). MS (ESj C29H38N603:519 (M+H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 40117-63-3, other downstream synthetic routes, hurry up and to see.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider