DeBergh, J. Robb’s team published research in Journal of the American Chemical Society in 135 | CAS: 1160556-64-8

Journal of the American Chemical Society published new progress about 1160556-64-8. 1160556-64-8 belongs to quinuclidine, auxiliary class Mono-phosphine Ligands, name is 2′-(Dicyclohexylphosphino)-N2,N2,N6,N6-tetramethyl-[1,1′-biphenyl]-2,6-diamine, and the molecular formula is C28H41N2P, Formula: C28H41N2P.

DeBergh, J. Robb published the artcileSynthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids, Formula: C28H41N2P, the publication is Journal of the American Chemical Society (2013), 135(29), 10638-10641, database is CAplus and MEDLINE.

A palladium-catalyzed method for the preparation of sulfonamides is described. The process exhibits significant functional group tolerance and allows for the preparation of a number of arylsulfonyl chlorides and sulfonamides under mild conditions. E.g., in presence of the Pd catalyst I (L = ligand II), reaction of PhOSO2Cl with 4-methoxyphenylboronic acid, followed by reaction with morpholine, gave 95% sulfonamide III.

Journal of the American Chemical Society published new progress about 1160556-64-8. 1160556-64-8 belongs to quinuclidine, auxiliary class Mono-phosphine Ligands, name is 2′-(Dicyclohexylphosphino)-N2,N2,N6,N6-tetramethyl-[1,1′-biphenyl]-2,6-diamine, and the molecular formula is C28H41N2P, Formula: C28H41N2P.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Tominaga, Ren’s team published research in Scientific Reports in 11 | CAS: 1761-71-3

Scientific Reports published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C8H16O2, COA of Formula: C13H26N2.

Tominaga, Ren published the artcileCo-continuous network polymers using epoxy monolith for the design of tough materials, COA of Formula: C13H26N2, the publication is Scientific Reports (2021), 11(1), 1431, database is CAplus and MEDLINE.

High-performance polymer materials that can exhibit distinguished mech. properties have been developed based on material design considering energy dissipation by sacrificial bond dissociation We now propose co-continuous network polymers (CNPs) for the design of tough polymer materials. CNP is a new composite material fabricated by filling the three-dimensionally continuous pores of a hard epoxy monolith with any cross-linked polymer having a low glass transition temperature (Tg). The structure and mech. properties of the CNPs containing epoxy resins, thiol-ene thermosets, and polyacrylates as the low-Tg components were investigated by differential scanning calorimetry, dynamic mech. anal., tensile tests as well as scanning electron microscopic observations and non-destructive 3D X-ray imaging in order to clarify a mechanism for exhibiting an excellent strength and toughness. It has been demonstrated that the mech. properties and fractural behavior of the CNPs significantly depend on the network structure of the filler polymers, and that a simultaneous high strength and toughness are achieved via the sacrificial fracture mechanism of epoxy-based hard materials with co-continuous network structures.

Scientific Reports published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C8H16O2, COA of Formula: C13H26N2.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Masutani, Yusuke’s team published research in Zairyo in 70 | CAS: 1761-71-3

Zairyo published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, HPLC of Formula: 1761-71-3.

Masutani, Yusuke published the artcileShape memory property of carbon fiber / epoxy resin composite materials, HPLC of Formula: 1761-71-3, the publication is Zairyo (2021), 70(1), 25-30, database is CAplus.

The authors investigated an effect of carbon fiber on shape memory property of carbon fiber / shape memory polymer (epoxy resin) composites by using dynamic mech. anal. (DMA), shape memory test, and mech. constitutive model. As a result of DMA, the storage modulus (E’) of the composite material (CF/EP) was improved by CF component, as compared with that of the pure epoxy resin (pure EP). Especially, E’ at rubbery region was remarkably increased with two decades. From the results of shape memory test, CF/EP showed good shape recovery behavior as well as pure EP. Contrary, the shape fixity ratio of CF/EP was lower than that of pure EP. This is because that the difference in E’ below / above the glass transition temperature (Tg) of CF/EP became smaller (less than one decade) than pure EP (two decades). In addition, the shape recovery of CF/EP started at lower temperature than Tg, although the recovery of pure EP showed around Tg. In order to examine the shape recovery behavior of CF/EP, the authors compared the viscoelastic properties of three samples, pure EP, CF layer and the composite. As a result, the CF layer had higher E’ than CF/EP, and no significant change in E’ occurred around Tg. From the results, the authors speculated that the CF layer acted as a shape recovery component for the composite material. Furthermore, the authors proposed a mech. constitutive model, in which the CF layer was assumed as the recover component, to qual. explain the shape recovery behavior of CF/EP composite. The simulated result by the constitutive model reproduced the trend of anomalous shape recovery behavior below Tg of CF/EP.

Zairyo published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, HPLC of Formula: 1761-71-3.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Saito, Fumito’s team published research in ACS Chemical Biology in 10 | CAS: 1353016-70-2

ACS Chemical Biology published new progress about 1353016-70-2. 1353016-70-2 belongs to quinuclidine, auxiliary class Other Aromatic Heterocyclic,Carboxylic acid,Amide,Inhibitor,Inhibitor, name is Dbco-acid, and the molecular formula is C19H15NO3, Quality Control of 1353016-70-2.

Saito, Fumito published the artcileCritical Evaluation and Rate Constants of Chemoselective Ligation Reactions for Stoichiometric Conjugations in Water, Quality Control of 1353016-70-2, the publication is ACS Chemical Biology (2015), 10(4), 1026-1033, database is CAplus and MEDLINE.

Chemoselective ligation reactions have contributed immensely to the development of organic synthesis and chem. biol. However, the ligation of stoichiometric amounts of large mols. for applications such as protein-protein conjugates is still challenging. Conjugation reactions need to be fast enough to proceed under dilute conditions and chemoselective in the presence of unprotected functional groups; the starting materials and products must be stable under the reaction conditions. To compare known ligation reactions for their suitability under these conditions, we determined the second-order rate constants of ligation reactions using peptide substrates with unprotected functional groups. The reaction conditions, the chemoselectivity of the reactions, and the stability of the starting materials and products were carefully evaluated. In some cases, the stability could be improved by modifying the substrate structure. These data obtained under the ligation conditions provide a useful guide to choose an appropriate ligation reaction for synthesis of large mols. by covalent ligation reactions of unprotected substrates in water.

ACS Chemical Biology published new progress about 1353016-70-2. 1353016-70-2 belongs to quinuclidine, auxiliary class Other Aromatic Heterocyclic,Carboxylic acid,Amide,Inhibitor,Inhibitor, name is Dbco-acid, and the molecular formula is C19H15NO3, Quality Control of 1353016-70-2.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Meyer, Christopher S.’s team published research in Composites, Part B: Engineering in 235 | CAS: 1761-71-3

Composites, Part B: Engineering published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Name: 4,4-Diaminodicyclohexyl methane.

Meyer, Christopher S. published the artcileMesoscale modeling of ballistic impact experiments on a single layer of plain weave composite, Name: 4,4-Diaminodicyclohexyl methane, the publication is Composites, Part B: Engineering (2022), 109753, database is CAplus.

To gain fundamental understanding of energy absorbing mechanisms during high velocity impact of plain weave S-2 glass/epoxy composites, single layer composites are ballistically tested and modeled. To avoid boundary condition effects, targets were 0.6 m by 0.6 m with free boundaries. Targets were perforated by 17 grain, 0.22 caliber fragment simulating projectiles. Experiments focused on determining ballistic limit velocity and the associated damage modes. The experiments were simulated with a continuum finite element model with effective plain weave properties that predicted the ballistic limit velocity with 6% error. A mesoscale model that incorporates the woven fabric architecture and lower length scale energy absorbing mechanisms was also developed. The mesoscale model includes accurate geometry and fiber volume fraction, rate-dependent matrix behavior, and important damage mechanisms including tow-tow delamination, tow pullout and frictional sliding. The mesoscale model predicted ballistic limit velocity with 1% error and more accurately predicts the deformation modes during ballistic impact and penetration than the continuum modeling approach. The mesoscale model indicated two phases of penetration, the first dominated by momentum transfer and the second dominated by tow tension and pullout. In a materials-by-design framework, the mesoscale model was used to quantify energy dissipation and identify important damage mechanisms that could be optimized to provide improved ballistic penetration resistance.

Composites, Part B: Engineering published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Name: 4,4-Diaminodicyclohexyl methane.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Ali, Imran’s team published research in Inorganic Chemistry Communications in 118 | CAS: 1761-71-3

Inorganic Chemistry Communications published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Application of 4,4-Diaminodicyclohexyl methane.

Ali, Imran published the artcileSynthesis, characterization, simulation, DNA binding and anticancer activities of Co(II), Cu(II), Ni(II) and Zn(II) complexes of a Schiff base containing o-hydroxyl group nitrogen ligand, Application of 4,4-Diaminodicyclohexyl methane, the publication is Inorganic Chemistry Communications (2020), 108004, database is CAplus.

New Schiff’s base (ligand) and its copper, cobalt, nickel and zinc metal ion complexes were synthesized with a good yield of 86 to 68.9%. and characterized by various anal. techniques. The spectral data confirms the formation of the compounds The ligand and the metal complexes were screened for anticancer activities with A549 and H1299 lung cancer lines. The results indicated that the zinc metal ion complex was the most active with 83.60 and 88.52% inhibitions for A549 and H1299 lung cancer lines at 20 mM concentration Besides, DNA binding study confirmed good binding constants (0.94 x 105-2.31 x 105) with a maximum of zinc metal ion complex (2.31 x 105); confirming the anticancer activities results. The docking study also confirmed that the reported mols. interacted with DNA strongly by hydrogen bonding and hydrostatic interactions with -4.6 kCal/mol as binding energy. It was also observed that the reported mols. preferred minor grooves of DNA for interactions. The excellent anticancer activities of metal complexes confirmed that these complexes may be the future lung cancer medication.

Inorganic Chemistry Communications published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Application of 4,4-Diaminodicyclohexyl methane.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Ding, Wen’s team published research in Beilstein Journal of Organic Chemistry in 11 | CAS: 20029-52-1

Beilstein Journal of Organic Chemistry published new progress about 20029-52-1. 20029-52-1 belongs to quinuclidine, auxiliary class Carboxylic acid,Benzene, name is 4-Cyclohexylbenzoic acid, and the molecular formula is C13H16O2, Computed Properties of 20029-52-1.

Ding, Wen published the artcileMolecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles, Computed Properties of 20029-52-1, the publication is Beilstein Journal of Organic Chemistry (2015), 2158-2165, database is CAplus and MEDLINE.

A copper-catalyzed oxidative direct formation of amides from nonactivated carboxylic acids and azoles with dioxygen as an activating reagent was reported. The azole amides were produced in good to excellent yields with a broad substrate scope. The mechanistic studies revealed that oxygen played an essential role in the success of the amidation reactions with copper peroxycarboxylate as the key intermediate. Transamidation occurs smoothly between azole amide and a variety of amines.

Beilstein Journal of Organic Chemistry published new progress about 20029-52-1. 20029-52-1 belongs to quinuclidine, auxiliary class Carboxylic acid,Benzene, name is 4-Cyclohexylbenzoic acid, and the molecular formula is C13H16O2, Computed Properties of 20029-52-1.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Asemani, H. R.’s team published research in Journal of Coatings Technology and Research in | CAS: 1761-71-3

Journal of Coatings Technology and Research published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Related Products of quinuclidine.

Asemani, H. R. published the artcileDual-curable coatings obtained from multi-functional non-isocyanate polyurethane oligomers, Related Products of quinuclidine, the publication is Journal of Coatings Technology and Research, database is CAplus.

The growing concerns and impending regulations on the usage of monomeric isocyanates in the production of polyurethane resins have led to the introduction of alternative non-isocyanate polyurethane (NIPU) systems. Although two-component NIPU coatings based on the reaction of cyclic carbonates and aliphatic amines have emerged as a promising option, they are still associated with two significant drawbacks: lower crosslinking densities due to reduced functionality of the oligomers and low ambient-temperature reactivity. This study reports the utilization of a hybrid approach to address these drawbacks. Amine-functional NIPU oligomers (NI-PUPA) were synthesized by the reaction of cycloaliphatic amine functional compounds and multi-functional cyclic carbonates in an excess amine molar ratio. After mixing the NI-PUPAs with (3-glycidyloxypropyl) trimethoxysilane (GPTMS), a dual-curable coating could be achieved by ambient curing of amines and epoxies and moisture curing of alkoxy silanes. A comparative exptl. design was implemented to evaluate the effect of an addnl. curing mechanism. The results revealed that the addnl. moisture curing led to faster ambient curing, faster development of properties, enhanced flexibility even at higher crosslinking densities, and better corrosion resistance. Such advancement could facilitate the future implementation of NIPUs in high-performance ambient-curing coating applications.

Journal of Coatings Technology and Research published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Related Products of quinuclidine.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Kirsch, Janelle K.’s team published research in Journal of Organic Chemistry in 83 | CAS: 1160556-64-8

Journal of Organic Chemistry published new progress about 1160556-64-8. 1160556-64-8 belongs to quinuclidine, auxiliary class Mono-phosphine Ligands, name is 2′-(Dicyclohexylphosphino)-N2,N2,N6,N6-tetramethyl-[1,1′-biphenyl]-2,6-diamine, and the molecular formula is C28H41N2P, Related Products of quinuclidine.

Kirsch, Janelle K. published the artcilePd-Catalyzed Alkene Carboheteroarylation Reactions for the Synthesis of 3-Cyclopentylindole Derivatives, Related Products of quinuclidine, the publication is Journal of Organic Chemistry (2018), 83(21), 13568-13573, database is CAplus and MEDLINE.

The Pd-catalyzed alkene carboheteroarylation of aryl and alkenyl triflate electrophiles bearing pendant alkenes with heteroaromatic nucleophiles affords substituted carbocycles with 3-indolyl or 3-pyrrolyl groups. The products are obtained in moderate to good yields, and the use of alkenyl triflate substrates produces products with high diastereoselectivities. The transformation is believed to proceed via a Friedel-Crafts-like reaction between the heteroaromatic nucleophile and an intermediate electrophilic palladium complex.

Journal of Organic Chemistry published new progress about 1160556-64-8. 1160556-64-8 belongs to quinuclidine, auxiliary class Mono-phosphine Ligands, name is 2′-(Dicyclohexylphosphino)-N2,N2,N6,N6-tetramethyl-[1,1′-biphenyl]-2,6-diamine, and the molecular formula is C28H41N2P, Related Products of quinuclidine.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider

 

Zhou, Zhuxin’s team published research in Science China: Chemistry in 64 | CAS: 1761-71-3

Science China: Chemistry published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C10H9NO, Application of 4,4-Diaminodicyclohexyl methane.

Zhou, Zhuxin published the artcileAchieving white-light emission in a single-component polymer with halogen-assisted interaction, Application of 4,4-Diaminodicyclohexyl methane, the publication is Science China: Chemistry (2021), 64(3), 467-477, database is CAplus.

White-light emitting (WLE) polymers have attracted continuous attention for their promising applications in solid-state lighting, flexible display and related fields. However, achieving dual-emission and pure white-light emission in a single-component polymer is still challenging. In this study, a brominated single-component polymer BrOD-TFB was designed and synthesized, which shows dual-emission and white light emission properties in solution and room-temperature phosphorescence (RTP) in thin films. The dual-emission properties can be tuned by concentration, solvent polarity, and excitation energy. Spectral anal. and theor. calculations reveal that the origin of the high-energy emission band (HEB) is intramol. charge transfer (ICT) along the polymer chain, while the low-energy emission band (LEB) originates from the excited-state related to the intra-chain and inter-chain C-Br···π interactions as demonstrated by the single-crystal structure of the model compound Appropriate control of the formation and the destruction of the halogen-assisted interactions can initiate white-light emission in the single-component polymer. More interestingly, by dispersing BrOD-TFB (0.1 wt%) in a non-emissive, colorless and transparent polymer, the characteristics of this white-light emission can be fully demonstrated while exhibiting unexpected RTP properties, with photoluminescence quantum efficiency (φPL) of up to 23% and CIE coordinates of (0.32, 0.32).

Science China: Chemistry published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C10H9NO, Application of 4,4-Diaminodicyclohexyl methane.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider