Simple exploration of 2756-87-8

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.If you’re interested in learning more about 2756-87-8. The above is the message from the blog manager. Category: quinuclidines.

Chemistry is a science major with cience and engineering. The main research directions are chemical synthesis,preparation and modification of special coatings, and research on the structure and performance of functional materials. 2756-87-8, Name is (E)-4-methoxy-4-oxobut-2-enoic acid, SMILES is O=C(O)/C=C/C(OC)=O, belongs to quinuclidine compound. In a document, author is Naito, Ryo, introduce the new discover, Category: quinuclidines.

Research and Development of Solifenacin for the Treatment of Overactive Bladder (OAB)

Solifenacin succinate (Vesicare (R)), a novel muscarinic receptor antagonist for the treatment of overactive bladder (OAB) with symptoms of urge urinary incontinence, urgency, and urinary frequency, has been approved in more than 60 countries. In the course of continuing efforts to develop potent and bladder-selective muscarinic M-3 receptor antagonists, solifenacin was designed as one of conformationally restricted analogues of quinuclidin-3-yl benzhydrylcarbamate with little selectivity among muscarinic receptor subtypes. In preclinical studies, solifenacin exhibited a highly bladder-selective profile compared with other antimuscarinic agents. Clinically, solifenacin ameliorates all symptoms in OAB patients; and, in particular, it produces a significant decrease in urgency episodes, which is the principal symptom of OAB with good tolerability. In this article, the drug discovery and the process development of solifenacin succinate are described.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.If you’re interested in learning more about 2756-87-8. The above is the message from the blog manager. Category: quinuclidines.

Reference:
Quinuclidine – Wikipedia,
,Quinuclidine | C7H13N | ChemSpider

Simple exploration of 535-75-1

Application of 535-75-1, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 535-75-1 is helpful to your research.

Application of 535-75-1, Chemistry, like all the natural sciences, begins with the direct observation of nature— in this case, of matter. 535-75-1, Name is Pipecolinic Acid, SMILES is O=C(C1NCCCC1)O, belongs to quinuclidine compound. In a article, author is Lima, Fabio, introduce new discover of the category.

A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters

We report herein the use of a dual catalytic system comprising a Lewis base catalyst such as quinuclidin-3-ol or 4-dimethylaminopyridine and a photoredox catalyst to generate carbon radicals from either boronic acids or esters. This system enabled a wide range of alkyl boronic esters and aryl or alkyl boronic acids to react with electron-deficient olefins via radical addition to efficiently form C-C coupled products in a redox-neutral fashion. The Lewis base catalyst was shown to form a redox-active complex with either the boronic esters or the trimeric form of the boronic acids (boroxines) in solution.

Application of 535-75-1, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 535-75-1 is helpful to your research.

Reference:
Quinuclidine – Wikipedia,
,Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about 22766-68-3

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Example 27 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-2-thienyl)methanol A solution of 2-thienyllithium (1.0M in THF, 9.10 mL, 9.10 mmol) was chilled down to -30 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.4196 g, 2.289 mmol) in THF (8 mL) was slowly added to the reaction mixture over 20 min. The reaction was allowed to warm up to room temperature over 16 h. The reaction was quenched with water and then evaporated to dryness. H2O and DCM were added, causing a light brown solid to crash out. This solid was filtered off to give the title compound (0.4161 g, 59.5%). EI-MS m/z 306(M+H+) Rt (1.35 min).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Little discovery in the laboratory: a new route for Quinuclidine-4-carbonitrile

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carbonitrile, , We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 26458-78-6, introduce a new downstream synthesis route., 26458-78-626458-78-6

Quinuclidine-4-carbonitrile (4 g, 29.4 mmol) was treated with 30 mL of 6 N aqueous HCl solution and stirred under reflux for 16 hr. The reaction mixture was cooled and evaporated to dryness under reduced pressure. The solid obtained was triturated with 20% ether-hexane to afford the HCl salt of quinuclidine-4-carboxylic acid (5.5 g, quantitative).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carbonitrile, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Flexible application of Ethyl quinuclidine-4-carboxylate in synthetic route

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

22766-68-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route.

1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol A solution of 4-methylphenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1509 g, 0.823 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2291 g, 86.6%). EI-MS m/z 322(M+H+) Rt (1.57 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about 22766-68-3

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The effect of the change of 22766-68-3 synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 22766-68-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.22766-68-3. An updated downstream synthesis route of 22766-68-3 as follows.

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Little discovery in the laboratory: a new route for 40117-63-3

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 40117-63-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.40117-63-3. An updated downstream synthesis route of 40117-63-3 as follows.

To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (5.5 g) in 30 mL of dry THF at 0 C. was added borane dimethyl sulfide complex (6.7 g, 3 eq.). The reaction mixture was stirred at room temperature for 1 hr and heated to reflux for 16 hr. It was then quenched with drop-wise addition of methanol (7 mL) at 0 C. The solvent was then removed under reduced pressure, and the crude product obtained was purified by column chromatography (Silica gel, 20% EA:Hexane) to afford the product quinuclidin-4-ylmethanol N-borane complex as a white solid (1.35 g, 30%).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The effect of the change of Ethyl quinuclidine-4-carboxylate synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 22766-68-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.22766-68-3. An updated downstream synthesis route of 22766-68-3 as follows.

1 Azabicyclo 2.2.2Joct-4 yl(diphe yl)methanol ;A solution of phenyllithium (1.5-1.7 M in 70 cyclohexane / 30 ether, 20.0 mL, 32 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4- carboxylate (1.51g, 8.23 mmol) in THF (20 mL) was slowly added to the reaction mixture at -30 C over 25 min. The reaction was allowed to warm up to room temperature overnight. The reaction was quenched with H20 and then evaporated to dryness under vacuum. H20 and EtOAc were added, causing a white solid to crash out. This solid was filtered off, to give the title compound (0.79 g). The aqueous phase was further extracted with EtOAc, the combined organic layers were dried over MgS04, filtered, and concentrated under vacuum. The crude product was treated with EtOAc and hexane and filtered to yield more of the title compound (0.67 g). Total yield (1.46 g, 60.7%). EI-MS m/z 294 (M+H+) Rt (1.37 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Fun Route: New Discovery of Ethyl quinuclidine-4-carboxylate

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Step 1. A solution of 4-carbethoxyquinuclidine (10.92 g) in THF (155 mL) was treated at-780C with borane-THF (1.0 M, 77.5 mL). The resulting mixture was stirred at -78C for 4 h, then treated with water (50 mL), warmed to room temperature and stirred for an additional hour. The reaction mixture was diluted with ethyl acetate and the aqueous phase was separated and extracted with two further portions of ethyl acetate. The combined organic layers were washed with brine- (twice), dried (MgSO4), filtered and evaporated in vacuo. Purification by silica gel chromatography (eluting with cyclohexane-ethyl acetate [1 :0 to 1 :1]) gave 1-boranyl-1-aza-bicyclo[2.2.2]octane-4- carboxylic acid ethyl ester (7.12 g, 61%) as an off-white solid. 1H NMR (400 MHz, CDCI3) delta 4.16 (2H1 q, J = 6.9), 3.10-3.05 (6H1 m), 1.98-1.93 (6H, m), 1.26 (3H, t, J = 6.9).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

Reference£º
Patent; ARGENTA DISCOVERY LIMITED; WO2008/99186; (2008); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider