Brief introduction of 40117-63-3

As the paragraph descriping shows that 40117-63-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,as a common compound, the synthetic route is as follows.

1. Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (Compound 91). A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mul, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled to room temperature, and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, and the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered, and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8% yield), which was used in the next step without any further purification.

As the paragraph descriping shows that 40117-63-3 is playing an increasingly important role.

Reference£º
Patent; Chiesi Farmaceutici S.p.A.; US2012/276018; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Simple exploration of 22766-68-3

22766-68-3 Ethyl quinuclidine-4-carboxylate 573424, aquinuclidine compound, is more and more widely used in various.

22766-68-3, Ethyl quinuclidine-4-carboxylate is a quinuclidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Crude preparation: azabicyclo [2.2.2] octane-4-carboxylic acid ethyl ester (18.3g, 0 . 10mol) dissolved in 3L tetrahydrofuran, under the protection of nitrogen, the solution is cooled down 5-15C, dropwise 0.30mol phenyl magnesium bromide. 5-15 C preserving heat and stirring 1 hour later (sampling TLC monitoring reaction progress). Add 10 ml water quenching. The liquid, aqueous phase using 100 ml tetrahydrofuran extraction two, combined with the phase water washing, drying and filtering. Removing part of the solvent under reduced pressure, the rest about 50 ml, residues 20 C stirring sleepovers crystallization. Filtering, washing (petroleum ether 2¡Á20 ml), the filtration cake at 40 C vacuum drying, be yellowish crystal 13.80g, yield 47.1%.Refining wuhu bromine ammonium : crude 100g dissolved in 80 C of 320 ml water-acetone 640 ml mixture, and 5g activated carbon decolourizations, filtering. Filtrate lower the temperature to 25 C, thermal insulation 1 hour. 1-2 hours to lower the temperature to 0-5 C and thermal insulation 3 hours. Filtering, the filter cake is washed with frozen 1:2 acetone-water washing two times (2x20ml). The filtration cake at 60 C vacuum drying, getting white crystalline solid (92g, yield 92%). (Normalization HPLC) purity of 99.25%.

22766-68-3 Ethyl quinuclidine-4-carboxylate 573424, aquinuclidine compound, is more and more widely used in various.

Reference£º
Patent; Anhui Dexinjia Biopharm Co., Ltd.; Li, Xuekun; Xu, Kun; (5 pag.)CN105461710; (2016); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Simple exploration of 40117-63-3

The synthetic route of 40117-63-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,as a common compound, the synthetic route is as follows.

To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (5.5 g) in 30 mL of dry THF at 0 C. was added borane dimethyl sulfide complex (6.7 g, 3 eq.). The reaction mixture was stirred at room temperature for 1 hr and heated to reflux for 16 hr. It was then quenched with drop-wise addition of methanol (7 mL) at 0 C. The solvent was then removed under reduced pressure, and the crude product obtained was purified by column chromatography (Silica gel, 20% EA:Hexane) to afford the product quinuclidin-4-ylmethanol N-borane complex as a white solid (1.35 g, 30%).

The synthetic route of 40117-63-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Analyzing the synthesis route of 40117-63-3

As the paragraph descriping shows that 40117-63-3 is playing an increasingly important role.

40117-63-3, Quinuclidine-4-carboxylic acid hydrochloride is a quinuclidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 8: (S)-4- ((1- (5- (2-methoxyquinolin-1-ium-3-yl)oxazol-2-yl)- 7- (methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (F8)A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.1 M) was treated with HOBt (1.3 eq.), EDC HC1 (1.3 eq.) and DIPEA (1.3 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to F7. The reaction was stirred for at RT for 48 h, filtered and directly purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. Theorganic phase was separated dried over Na2504 and concentrated under reduced pressure. The resulting solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. MS (ESj C29H37N504: 520 (M+H).

As the paragraph descriping shows that 40117-63-3 is playing an increasingly important role.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

New learning discoveries about 26458-78-6

26458-78-6 Quinuclidine-4-carbonitrile 141292, aquinuclidine compound, is more and more widely used in various.

26458-78-6, Quinuclidine-4-carbonitrile is a quinuclidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Quinuclidine-4-carbonitrile (4 g, 29.4 mmol) was treated with 30 mL of 6 N aqueous HCl solution and stirred under reflux for 16 hr. The reaction mixture was cooled and evaporated to dryness under reduced pressure. The solid obtained was triturated with 20% ether-hexane to afford the HCl salt of quinuclidine-4-carboxylic acid (5.5 g, quantitative).

26458-78-6 Quinuclidine-4-carbonitrile 141292, aquinuclidine compound, is more and more widely used in various.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

 

Some tips on 22766-68-3

22766-68-3 Ethyl quinuclidine-4-carboxylate 573424, aquinuclidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22766-68-3,Ethyl quinuclidine-4-carboxylate,as a common compound, the synthetic route is as follows.

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

22766-68-3 Ethyl quinuclidine-4-carboxylate 573424, aquinuclidine compound, is more and more widely used in various.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

 

Downstream synthetic route of 22766-68-3

As the paragraph descriping shows that 22766-68-3 is playing an increasingly important role.

22766-68-3, Ethyl quinuclidine-4-carboxylate is a quinuclidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 500 mL three-necked flask, phenyllithium (160 mL, lM in THF) was treated with nitrogen Was slowly added dropwise to a solution of compound 1-4 (6.8 g, 0.04momicron1) in tetrahydrofuran (120 mL) Control the temperature at -50 C and stir at room temperature overnight. Water (200 mL) was added to quench the reaction, Extracted with ethyl acetate (500 mL), the organic layer was washed with saturated brine, dried over sodium sulfate, The solvent was evaporated under reduced pressure to give 6.8 g of a brown viscous solid, Ethyl acetate: petroleum ether = 1: 2 (200 mL) was added and stirred at room temperature for 2 h, filtered, The filter cake was washed with petroleum ether and dried to give a 5.1g lime light gray solid.

As the paragraph descriping shows that 22766-68-3 is playing an increasingly important role.

Reference£º
Patent; Yifang Bio-technology (Shanghai) Co., Ltd.; Dai Xing; Jiang Yueheng; Wang Yaolin; (26 pag.)CN107200734; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

 

Brief introduction of 40117-63-3

As the paragraph descriping shows that 40117-63-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,as a common compound, the synthetic route is as follows.

Under the protection of nitrogen, a solution for dissolving the WD2 with the tetrahydrofuran is added into a 20-liter reaction kettle, the temperature is controlled to be below 40 C under stirring, and 3.8 liters of phenylmagnesium bromide reagent is added dropwise, and carrying out heating reflux reaction for 4 hours. The temperature is controlled to be controlled at 40 C under cooling and stirring, and 1.547 kg of ammonium chloride aqueous solution (25%) is added dropwise) after dropwise adding, adding about 74 kg of purified water, and standing for liquid separation after stirring, so as to obtain an organic phase; extracting the water phase by using 2-methyl tetrahydrofuran, the organic phase is combined with the organic phase, and the organic phase is washed with a 25% sodium chloride aqueous solution. A 1 m hydrochloric acid aqueous solution is added to the obtained organic phase to be about 140Kg, fully stirring, standing and separating liquid to obtain a water phase; dropwise adding a sodium hydroxide aqueous solution with the concentration of 4 m into the obtained hydrochloric acid salt water solution of the WD1 to adjust the pH value, and separating out solids. After dropping, stirring is continued for about 0.5 hour, and the mixture is filtered to obtain a filter cake; the filtrate is subjected to reduced pressure concentration until no large amount of distillate is discharged, and the filtrate is filtered to obtain a filter cake; combining the obtained filter cakes twice, and washing with purified water with the temperature of 25 +/-5 C, and then pulping is carried out by using purified water at 25 +/-5 C for about 2.61 kg. The filter cake is firstly washed with purified water at 25 +/-5 C, and then is dried to obtain WD1:

As the paragraph descriping shows that 40117-63-3 is playing an increasingly important role.

Reference£º
Patent; Sichuan Hai Sike Pharmaceutical Co., Ltd.; Yi Shixu; Fu Li; (6 pag.)CN106810546; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

 

Downstream synthetic route of 22766-68-3

As the paragraph descriping shows that 22766-68-3 is playing an increasingly important role.

22766-68-3, Ethyl quinuclidine-4-carboxylate is a quinuclidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1-azabicyclo[2.2.2]oct-4-yl{bis[3-(methyloxy)phenyl]}methanol A solution of 3-(methyloxy)phenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1608 g, 0.877 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2881 g, 92.9%). EI-MS m/z 354(M+H+) Rt (1.46 min).

As the paragraph descriping shows that 22766-68-3 is playing an increasingly important role.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

 

Brief introduction of 22766-68-3

The synthetic route of 22766-68-3 has been constantly updated, and we look forward to future research findings.

22766-68-3, Ethyl quinuclidine-4-carboxylate is a quinuclidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 32 Preparation of 1-butyl-4-[hydroxy(di-3-thienyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide A solution of n-Butyl lithium (2.5M in hexanes, 5.0 mL, 12.5 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (1.15 mL, 12.3 mmol) dissolved in ethyl ether (4.0 mL) was slowly added to the reaction mixture. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.7640 g, 4.16 mmol) in THF/Et2O (4 mL/4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h then slowly quenched with water. The reaction was concentrated and the resulting brown solid was taken up in water and DCM. The organic phase was separated, dried over MgSO4, filtered and concentrated under vacuum to give a brown solid. The solid was dissolved in DMSO and purified by preparatory HPLC to give the title compound (0.1736 g, 9.4%). EI-MS m/z 362(M+) Rt (1.73 min).

The synthetic route of 22766-68-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider