Downstream Synthetic Route Of 1214711-48-4

After consulting a lot of data, we found that this compound(1214711-48-4)Synthetic Route of C18H13BCl3F4N3O can be used in many types of reactions. And in most cases, this compound has more advantages.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1214711-48-4, is researched, Molecular C18H13BCl3F4N3O, about Oxidative Enantioselective α-Fluorination of Aliphatic Aldehydes Enabled by N-Heterocyclic Carbene Catalysis, the main research direction is fluoroester chemoselective enantioselective preparation; chemoselective enantioselective oxidative fluorination aliphatic aldehyde alc indenooxazinotriazolium catalyst; N-heterocyclic carbenes; aldehydes; enolates; fluorine; oxidation.Synthetic Route of C18H13BCl3F4N3O.

In the presence of the indenooxazinotriazolium carbene precursor I•BF4-, aliphatic aldehydes such as hydrocinnamaldehydes 4-RC6H4CH2CH2CHO (R = H, Br) underwent chemo- and enantioselective oxidative fluorination with N-fluorobenzenesulfonimide (NFSI) with alcs. such as cyclohexanol to give nonracemic α-fluoroesters such as II in 71-89% yields and in 73-98% ee. II (R = H) was hydrolyzed to its parent acid, converted to an N-benzyl-β-fluoroamine, and reduced to a β-fluoro alc.; II (R = Br) underwent Suzuki coupling to give II (R = Ph).

After consulting a lot of data, we found that this compound(1214711-48-4)Synthetic Route of C18H13BCl3F4N3O can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

The effect of the change of synthetic route on the product 36620-11-8

After consulting a lot of data, we found that this compound(36620-11-8)Product Details of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Product Details of 36620-11-8. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Bis(norbornadiene)rhodium (I) tetrafluoroborate, is researched, Molecular C14H8BF4Rh, CAS is 36620-11-8, about Asymmetric total synthesis of C9′-epi-sinefungin. Author is Decultot, Ludovic; Policarpo, Rocco L.; Wright, Brandon A.; Huang, Danny; Shair, Matthew D..

The natural nucleoside (+)-sinefungin, structurally similar to cofactor S-adenosyl-L-methionine (SAM), inhibits various SAM-dependent methyltransferases (MTs). Access to sinefungin analogs could serve as the basis for the rational design of small-mol. methyltransferase inhibitors. We developed a route to the unnatural C9′ epimer of sinefungin that employed a diastereoselective Overman rearrangement to install the key C6′ amino stereo-center. The ability for late stage modification is highlighted, opening an avenue for the discovery of new MTs inhibitors.

After consulting a lot of data, we found that this compound(36620-11-8)Product Details of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

Extended knowledge of 36620-11-8

After consulting a lot of data, we found that this compound(36620-11-8)Related Products of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Liu, Gang; Yin, Congcong; Yang, Xuanliang; Li, Anqi; Wang, Minyan; Zhang, Xumu; Dong, Xiu-Qin published an article about the compound: Bis(norbornadiene)rhodium (I) tetrafluoroborate( cas:36620-11-8,SMILESS:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10 ).Related Products of 36620-11-8. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:36620-11-8) through the article.

Rh-catalyzed highly chemo- and enantioselective hydrogenation of β-sulfonyl-α,β-unsaturated ketones was first successfully developed. Remarkably, a variety of enantioenriched γ-ketosulfones were generated in good to high yields with excellent chemo/enantioselectivities (82-99% yields, >99:1 chemoselectivity, 88 to >99% ee). Moreover, the gram-scale asym. hydrogenation was carried out smoothly in 97% yield and 97% ee. Preliminary DFT computations furnished a reasonable explanation for the high chemoselectivity and enantioselectivity.

After consulting a lot of data, we found that this compound(36620-11-8)Related Products of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

Introduction of a new synthetic route about 36620-11-8

After consulting a lot of data, we found that this compound(36620-11-8)HPLC of Formula: 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Li, Chengxi; Wan, Feng; Chen, Yuan; Peng, Henian; Tang, Wenjun; Yu, Shu; McWilliams, J. Christopher; Mustakis, Jason; Samp, Lacey; Maguire, Robert J. published the article 《Stereoelectronic Effects in Ligand Design: Enantioselective Rhodium-Catalyzed Hydrogenation of Aliphatic Cyclic Tetrasubstituted Enamides and Concise Synthesis of (R)-Tofacitinib》. Keywords: carbocyclic heterocyclic amine enantioselective synthesis ligand catalyzed hydrogenation enamide; Tofacitinib enantioselective synthesis Rhodium bisphosphorus ligand catalyzed hydrogenation enamide; P ligands; asymmetric hydrogenation; enamides; stereoelectronic effects; tofacitinib.They researched the compound: Bis(norbornadiene)rhodium (I) tetrafluoroborate( cas:36620-11-8 ).HPLC of Formula: 36620-11-8. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:36620-11-8) here.

We herein report the development of a conformationally defined, electron-rich, C2-sym., P-chiral bisphosphorus ligand, ArcPhos, by taking advantage of stereoelectronic effects in ligand design. With the Rh-ArcPhos catalyst, excellent enantioselectivities and unprecedentedly high turnovers (TON up to 10,000) were achieved in the asym. hydrogenation of aliphatic carbocyclic and heterocyclic tetrasubstituted enamides, to generate a series of chiral cis-2-alkyl-substituted carbocyclic and heterocyclic amine derivatives in excellent enantiomeric ratios. This method also enabled an efficient and practical synthesis of the Janus kinase inhibitor (R)-tofacitinib.

After consulting a lot of data, we found that this compound(36620-11-8)HPLC of Formula: 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

An update on the compound challenge: 1214711-48-4

After consulting a lot of data, we found that this compound(1214711-48-4)Reference of (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference of (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate, is researched, Molecular C18H13BCl3F4N3O, CAS is 1214711-48-4, about Divergent Dynamic Kinetic Resolution of a Racemic Mixture of Four Stereoisomers via N-Heterocyclic Carbene Organocatalysis. Author is Vasamsetty, Laxmaiah; Kong, Xiangwen; Meng, Miao; Yang, Shuang; Xu, Weici; Reddy, Pogula Sreekanth; Fang, Xinqiang.

Racemic mixtures of four stereoisomers are easily formed via many fundamental organic transformations, but the direct utilities of these mixtures were less studied and remain large challenges to date. The authors introduce a new method, i.e., divergent dynamic kinetic resolution, to achieve the separation of racemic mixtures of four stereoisomers. The hypothesis was proved by using a N-heterocyclic carbene-catalyzed benzoin reaction, which afforded two separable diastereomeric products bearing three consecutive stereocenters with good to excellent enantioselectivities. The authors believe that this resolution protocol will find applications in more transformations.

After consulting a lot of data, we found that this compound(1214711-48-4)Reference of (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

Brief introduction of 36620-11-8

After consulting a lot of data, we found that this compound(36620-11-8)Related Products of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Structural exploration of rhodium catalysts and their kinetic studies for efficient parahydrogen-induced polarization by side arm hydrogenation, published in 2019, which mentions a compound: 36620-11-8, mainly applied to rhodium catalyst PHIP efficiency side arm hydrogenation kinetics, Related Products of 36620-11-8.

Parahydrogen-induced polarization (PHIP) is a rapid and cost-effective hyperpolarization technique using transition metal-catalyzed hydrogenation with parahydrogen. We examined rhodium catalysts and their kinetic studies, rarely considered in the research of current PHIP. It emerged that rhodium complexes with electron-donating bisphosphine ligands, with a dicyclohexylphosphino group, appear to be more effective than conventional rhodium catalysts.

After consulting a lot of data, we found that this compound(36620-11-8)Related Products of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

Research on new synthetic routes about 36620-11-8

After consulting a lot of data, we found that this compound(36620-11-8)Category: quinuclidine can be used in many types of reactions. And in most cases, this compound has more advantages.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Bis(norbornadiene)rhodium (I) tetrafluoroborate, is researched, Molecular C14H8BF4Rh, CAS is 36620-11-8, about (Z)-Selective Hydroboration of Terminal Alkynes Catalyzed by a PSP-Pincer Rhodium Complex.Category: quinuclidine.

A highly (Z)-selective hydroboration of terminal alkynes was achieved using a thioxanthene-based PSP-pincer Rh catalyst. This hydroboration exhibited good chemoselectivity toward alkynes over carbonyl compounds such as ketones and aldehydes. The mechanistic studies indicated the involvement of Rh-vinylidene intermediates, and the high (Z)-selectivity could be attributed to the rigid and electron-rich nature of the PSP-Rh catalyst.

After consulting a lot of data, we found that this compound(36620-11-8)Category: quinuclidine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

Something interesting about 36620-11-8

After consulting a lot of data, we found that this compound(36620-11-8)Product Details of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Product Details of 36620-11-8. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Bis(norbornadiene)rhodium (I) tetrafluoroborate, is researched, Molecular C14H8BF4Rh, CAS is 36620-11-8, about A rhodium-catalyzed Sonogashira-type coupling exploiting C-S functionalization: orthogonality with palladium-catalyzed variants. Author is Arambasic, Milan; Majhail, Manjeet K.; Straker, Robert N.; Neuhaus, James D.; Willis, Michael C..

This report concerns the development of an efficient Sonogashira-type coupling of arylmethylsulfides and terminal alkynes to generate aryl alkyne motifs. Orthogonal reactivity between traditional Pd catalysts, and the Rh catalysts employed, results in the ability to selectively activate either the C-S bond or C-X bond through catalyst choice. The Rh-bisphosphine catalyst has further been shown to be able to effect a hydroacylation-Sonogashira tandem sequence, and in combination with further onward reactions has been used in the synthesis of heterocycles and polycyclic systems.

After consulting a lot of data, we found that this compound(36620-11-8)Product Details of 36620-11-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

The effect of reaction temperature change on equilibrium 1214711-48-4

After consulting a lot of data, we found that this compound(1214711-48-4)Application In Synthesis of (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate can be used in many types of reactions. And in most cases, this compound has more advantages.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called A photoisomerization-coupled asymmetric Stetter reaction: application to the total synthesis of three diastereomers of (-)-cephalimysin A, published in 2013, which mentions a compound: 1214711-48-4, mainly applied to photoisomerization Stetter reaction total synthesis cephalimysin enantioselective synthesis; Aspergillus fumigatus cephalimysin preparation total synthesis; Mugil cephalus Gray mullet mushroom fungus cephalimysin preparation, Application In Synthesis of (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate.

The total synthesis of 8-epi-cephalimysin A, 8,9-epi-cephalimysin A and 9-epi-(-)-cephalimysin A is described. This catalytic enantioselective synthesis takes advantage of a novel tandem photoisomerization/Stetter reaction. The approach provides rapid access to the desired spirofuranone lactam core in good yield and excellent enantioselectivity. A late stage oxidation strategy allows for flexible access to three of the four diastereomers of cephalimysin A. Access to the epimers provides further support for the correction of the initially proposed relative stereochem. of cephalimysin A. The title compounds thus formed included 8-epi-cephalimycin A (I) and related substances, (5S,8R,9R)-8-Benzoyl-2-(3E)-3-hexen-1-yl-9-hydroxy-8-methoxy-3-methyl-1-oxa-7-azaspiro[4.4]non-2-ene-4,6-dione cephalimysin A. The synthesis of the target compounds was achieved using (5aR,10bS)-5a,10b-dihydro-2-(2,3,4,5,6-pentafluorophenyl)-4H,6H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazinium, tetrafluoroborate(1-) as catalyst.

After consulting a lot of data, we found that this compound(1214711-48-4)Application In Synthesis of (5aS,10bR)-2-(2,4,6-Trichlorophenyl)-4,5a,6,10b-tetrahydro-2H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazin-11-ium tetrafluoroborate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider

 

The influence of catalyst in reaction 36620-11-8

Although many compounds look similar to this compound(36620-11-8)Application of 36620-11-8, numerous studies have shown that this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: Bis(norbornadiene)rhodium (I) tetrafluoroborate( cas:36620-11-8 ) is researched.Application of 36620-11-8.Chen, Ziyi; Yin, Xuguang; Dong, Xiu-Qin; Zhang, Xumu published the article 《Efficient access to chiral dihydrobenzoxazinones via Rh-catalyzed hydrogenation》 about this compound( cas:36620-11-8 ) in RSC Advances. Keywords: benzoxazinone dihydro preparation enantioselective; benzoxazinylidene acetate ester hydrogenation rhodium catalyst. Let’s learn more about this compound (cas:36620-11-8).

Rh/(S)-DTBM-SegPhos-catalyzed asym. hydrogenation of prochiral (Z)-2-(2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-ylidene)acetate esters I (R = 6-F, 5-CH3, 7-Cl, etc.; R1 = CH3, C2H5) was successfully developed. A series of chiral dihydrobenzoxazinones (R)-II was prepared through efficient methodol. with good to excellent results (up to >99% conversion, 93% yield and >99% ee), which are important motifs in the biol. active mols.

Although many compounds look similar to this compound(36620-11-8)Application of 36620-11-8, numerous studies have shown that this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider