New downstream synthetic route of Ethyl quinuclidine-4-carboxylate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Ethyl quinuclidine-4-carboxylate reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.22766-68-3, Ethyl quinuclidine-4-carboxylate it is a common compound, a new synthetic route is introduced below.22766-68-3

1-azabicyclo[2.2.2]oct-4-yl]bis(4-fluorophenyl)]methanol A solution of 4-fluorophenylmagnesiumbromide (1.0 M in THF, 4.4 mL, 4.4 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1973 g, 1.08 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.3152 g, 88.9%). EI-MS m/z 330(M+H+) Rt (1.65 min)., 22766-68-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Ethyl quinuclidine-4-carboxylate reaction routes.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some tips on Quinuclidine-4-carboxylic acid hydrochloride

40117-63-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,40117-63-3 ,Quinuclidine-4-carboxylic acid hydrochloride, other downstream synthetic routes, hurry up and to see

Name is Quinuclidine-4-carboxylic acid hydrochloride, as a common heterocyclic compound, it belongs to quinuclidine compound, and cas is 40117-63-3, its synthesis route is as follows.

Step 5: (S)-4-((1-(5-(2-methoxyquinolin-1-ium-3-yl)-JH-imidazol-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (A5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to a solution of A4 in DMF (0.2 M). The reaction was stirred at RT for 2 h and subsequently was purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). Theproduct was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. The organic phase was separated, dried over Na2504 and concentrated under reduced pressure. The resulting syrup was dissolved in acetonitrile/H20 (2:3) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. 1H-NMR (400 MHz, 300 K, DMSO-d6) oe 8.73 (br s, 1H), 7.94 (t, 2H, J 9.6 Hz), 7.76 (d, 1H, J 8.0 Hz), 7.67 (br s,1H), 7.60 (m, 2H), 7.42 (t, 1H, J8.0 Hz), 5.02 (m, 1H), 4.13 (s, 3H), 3.93 (s, 2H), 3.18 (t, 6H, J7.2 Hz), 2.54 (d, 3H, J4.4 Hz), 2.05-1.91 (m, 8H), 1.51-1.23 (m, 8H). MS (ESj C29H38N603:519 (M+H).

40117-63-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,40117-63-3 ,Quinuclidine-4-carboxylic acid hydrochloride, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Application of 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ethyl quinuclidine-4-carboxylate, 22766-68-3

22766-68-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ethyl quinuclidine-4-carboxylate, cas is 22766-68-3,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

Crude preparation: azabicyclo [2.2.2] octane-4-carboxylic acid ethyl ester (18.3g, 0 . 10mol) dissolved in 3L tetrahydrofuran, under the protection of nitrogen, the solution is cooled down 5-15C, dropwise 0.30mol phenyl magnesium bromide. 5-15 C preserving heat and stirring 1 hour later (sampling TLC monitoring reaction progress). Add 10 ml water quenching. The liquid, aqueous phase using 100 ml tetrahydrofuran extraction two, combined with the phase water washing, drying and filtering. Removing part of the solvent under reduced pressure, the rest about 50 ml, residues 20 C stirring sleepovers crystallization. Filtering, washing (petroleum ether 2¡Á20 ml), the filtration cake at 40 C vacuum drying, be yellowish crystal 13.80g, yield 47.1%.Refining wuhu bromine ammonium : crude 100g dissolved in 80 C of 320 ml water-acetone 640 ml mixture, and 5g activated carbon decolourizations, filtering. Filtrate lower the temperature to 25 C, thermal insulation 1 hour. 1-2 hours to lower the temperature to 0-5 C and thermal insulation 3 hours. Filtering, the filter cake is washed with frozen 1:2 acetone-water washing two times (2x20ml). The filtration cake at 60 C vacuum drying, getting white crystalline solid (92g, yield 92%). (Normalization HPLC) purity of 99.25%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ethyl quinuclidine-4-carboxylate, 22766-68-3

Reference£º
Patent; Anhui Dexinjia Biopharm Co., Ltd.; Li, Xuekun; Xu, Kun; (5 pag.)CN105461710; (2016); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The important role of Ethyl quinuclidine-4-carboxylate

The chemical industry reduces the impact on the environment during synthesis,22766-68-3,Ethyl quinuclidine-4-carboxylate,I believe this compound will play a more active role in future production and life.

22766-68-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ethyl quinuclidine-4-carboxylate, cas is 22766-68-3,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

1-azabicyclo[2.2.2]oct-4-yl[bis(3-fluorophenyl)]methanol A solution of 3-fluorophenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1756 g, 0.958 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.242 g, 76.7%). EI-MS m/z 330(M+H+) Rt (1.45 min).

The chemical industry reduces the impact on the environment during synthesis,22766-68-3,Ethyl quinuclidine-4-carboxylate,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Share a compound : 22766-68-3

The chemical industry reduces the impact on the environment during synthesis,22766-68-3,Ethyl quinuclidine-4-carboxylate,I believe this compound will play a more active role in future production and life.

22766-68-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ethyl quinuclidine-4-carboxylate, cas is 22766-68-3,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

1-azabicyclo[2.2.2]oct-4-yl{bis[3-(methyloxy)phenyl]}methanol A solution of 3-(methyloxy)phenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1608 g, 0.877 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2881 g, 92.9%). EI-MS m/z 354(M+H+) Rt (1.46 min).

The chemical industry reduces the impact on the environment during synthesis,22766-68-3,Ethyl quinuclidine-4-carboxylate,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some tips on 22766-68-3

The chemical industry reduces the impact on the environment during synthesis,22766-68-3,Ethyl quinuclidine-4-carboxylate,I believe this compound will play a more active role in future production and life.

22766-68-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ethyl quinuclidine-4-carboxylate, cas is 22766-68-3,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

1-azabicyclo[2.2.2]oct-4-yl[bis(3-fluorophenyl)]methanol A solution of 3-fluorophenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1756 g, 0.958 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.242 g, 76.7%). EI-MS m/z 330(M+H+) Rt (1.45 min).

The chemical industry reduces the impact on the environment during synthesis,22766-68-3,Ethyl quinuclidine-4-carboxylate,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Analyzing the synthesis route of 40117-63-3

The chemical industry reduces the impact on the environment during synthesis,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,I believe this compound will play a more active role in future production and life.

40117-63-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Quinuclidine-4-carboxylic acid hydrochloride, cas is 40117-63-3,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

(Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954). To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

The chemical industry reduces the impact on the environment during synthesis,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The important role of 26458-78-6

The chemical industry reduces the impact on the environment during synthesis,26458-78-6,Quinuclidine-4-carbonitrile,I believe this compound will play a more active role in future production and life.

26458-78-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Quinuclidine-4-carbonitrile, cas is 26458-78-6,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

Quinuclidine-4-carbonitrile (4 g, 29.4 mmol) was treated with 30 mL of 6 N aqueous HCl solution and stirred under reflux for 16 hr. The reaction mixture was cooled and evaporated to dryness under reduced pressure. The solid obtained was triturated with 20% ether-hexane to afford the HCl salt of quinuclidine-4-carboxylic acid (5.5 g, quantitative).

The chemical industry reduces the impact on the environment during synthesis,26458-78-6,Quinuclidine-4-carbonitrile,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Extracurricular laboratory: Synthetic route of 40117-63-3

40117-63-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,40117-63-3 ,Quinuclidine-4-carboxylic acid hydrochloride, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to quinuclidine compound, name is Quinuclidine-4-carboxylic acid hydrochloride, and cas is 40117-63-3, its synthesis route is as follows.

Step 8: (S)-4- ((1- (5- (2-methoxyquinolin-1-ium-3-yl)oxazol-2-yl)- 7- (methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (F8)A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.1 M) was treated with HOBt (1.3 eq.), EDC HC1 (1.3 eq.) and DIPEA (1.3 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to F7. The reaction was stirred for at RT for 48 h, filtered and directly purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. Theorganic phase was separated dried over Na2504 and concentrated under reduced pressure. The resulting solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. MS (ESj C29H37N504: 520 (M+H).

40117-63-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,40117-63-3 ,Quinuclidine-4-carboxylic acid hydrochloride, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

New learning discoveries about 22766-68-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ethyl quinuclidine-4-carboxylate, 22766-68-3

22766-68-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ethyl quinuclidine-4-carboxylate, cas is 22766-68-3,the quinuclidine compound, it is a common compound, a new synthetic route is introduced below.

A solution of phenyllithium (1 .9 M in 70 cyclohexane/30 ether, 22.30 mL, 42.40 mmol) was cooled down to -30C under nitrogen. A solution of ethyl 1 -azabicyclo[2.2.2]octane-4-carboxylate (III, 2.0 g, 10.90 mmol) in THF (27.0 mL) was slowly added to the reaction mixture at -30C over 25 mins. The reaction mixture was allowed to warm up to room temperature over 16h. The reaction was quenched with water (10.0 mL) and then evaporated to dryness under vacuum. Water (40.0 mL) and ethyl acetate (40.0 mL) were added, causing a white solid to crash out. This solid was filtered off under vacuum, to give a white powder (2.46 g, 76.8%). 1 -azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol (IV): ^H-NMR (300 MHz, CDC ) delta 7.54 – 7.51 (m, 3H), 7.33 – 7.20 (m, 6H), 2.85 – 2.80 (m, 6H), 1 .78 – 1.72 (m, 6H). MS (ESI) m/z calcd for C20H23NO: 293, found 294 [M + H]+.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ethyl quinuclidine-4-carboxylate, 22766-68-3

Reference£º
Patent; HOVIONE SCIENTIA LIMITED; TURNER, Craig; LOURENCO, Nuno Torres; SOBRAL, Luis; ANTUNES, Rafael; SANTOS, Maria; ESPADINHA, Margarida; (35 pag.)WO2018/87561; (2018); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider